

Fast timing tests of strong gravity

Phil Uttley

Getting close to black holes: the innermost 100 R_G

- Responsible for up to ~98% of accretion power output.
- Launch-site of the most powerful outflows and jets.
- Strongest gravitational potential in the universe.
- In stellar mass BH, the greatest spacetime curvatures that we know to exist.

The strong gravity regime

The most extreme space-time is found around stellar-mass BH & NS, and corresponds to smallest lightcrossing timescales, and the fastest variability signals.

(Psaltis 2008)

Mapping the inner accretion flow

- Time delays are observed between variations at different energies.
- For the first time, the fastest of these can be identified with reverberation of the continuum off the disc (e.g. in AGN 1H0707-495, Fabian et al. 2009, Zoghbi et al. 2010

Why IXO?

- Fastest variations probe smallest regions (simple light-travel/causality arguments)
- Need high S/N to probe fastest variations
- ♦ Two S/N regimes:
 - many photons/variability-cycle: S/N scales as sqrt(rate)
 - few photons/variability-cycle: S/N scales linearly
 with rate
- AGN are in former regime, XRBs in latter, hence we see biggest improvements for XRBs at the highest count rates: optimal for HTRS observations of XRBs

Probing the fastest signals around black holes

Basic X-ray timing

Light curves show variations on a broad range of timescales. The Power Spectral Density shows the rmssquared amplitude of variation as a function of Fourier frequency (1/timescale)

GX 339-4 2009 hard state 0.5-10 keV (XMM-Newton EPIC-pn)

High-frequencies: what do we see now?

- ♦ Detection of highfrequency QPOs is a major legacy of RXTE
- ♦ Interpretations centre around one or more General relativistic epicyclic resonant frequencies at inner disc edge
- But too few examples to pin down models

(Remillard 2010)

What could IXO-HTRS see?

- Even allowing for hard spectral shape of QPOs, IXO-HTRS combination allows detection of signals down to <0.25% rms</p>
- Soft X-ray response also opens up new discovery space of QPOs associated with the accretion disc

Tracking the QPO on 1s time-scales

Stability of frequency would prove epicyclic GR interpretation: opens door to use of QPO to measure spin for BH with known mass

QPO+simultaneous spectral modelling

BHXRBs will allow simultaneous comparison of several independent techniques to estimate spin

What about HFQPOs in AGN?

- → To date, only one statistically strong example (RE J1034+396, Gierlinski et al. 2008)
- However, IXO only modestly improves chances of detection, because in AGN, noise is dominated by the intrinsic variability, not Poisson effects

X-ray reverberation mapping of accreting black holes

- ♦ Power-law continuum varies first, followed by reflection thermally-reprocessed emission
- ♦ Path-length difference defines intrinsic lag. Observed lag is the intrinsic lag diluted by the ratio of continuum to reverberating emission

Spectral-timing methods

Use the 'cross-power-spectrum' (or 'cross-spectrum') to combine spectral and timing information and measure

lags vs energy (lag-energy): plot the lag of variations in each energy bin relative to some broad 'reference' energy band. Should roughly follow shape of reverberation-spectrum/continuum

We can also define specific frequency/timescale ranges to measure the lags over

First evidence of disk reverberation in a BHXRB

The lag behaviour is also strongly frequency-dependent, with a sign-reversal corresponding to drop in variable disc emission

Interpretation

At **low frequencies**, variations in mdot are produced at larger radius in disc, modulating disc emission before propagating in to the corona on the disc viscous time-scale

At **high frequencies**, variations in mdot are produced at small radius in disc or in corona itself. Only a fraction of disc emission can respond, but all of corona does, and coronal heating dominates variability \rightarrow disc reverberation

Importance of soft response

Note that the disc signature in the lags appears below 2 keV in the hard state: underlines need for a soft response to probe disk variability and thermal component of reverberation. This could never be seen with RXTE and had to wait for XMM-Newton!

The future with IXO

Lag vs energy for 100 ksec observation of BHXRB hard state

Huge improvement since S/N scales linearly with count rate

How lag-vs-energy spectra map the disk

- Lag depends on emissivity vs light-travel delay (size-scale). Selecting on Fourier-frequency can pick out different parts of the emissivity profile at that energy.
- We can map the reflection and disc thermal emission

Key point: the power of measuring reverberation lags is that they give you measurements in km, not R/M (given by spectral fits).

Can use in combination with R/M measures to:

- ♦ estimate BH mass
- or with an independent estimate of mass, carry out direct test of GR in strong-field regime

Using IXO-HTRS to measure the disk inner radius of Cyg X-1 in the hard state

(100 ksec exposure, select variations from 50-100 Hz)

Using IXO-HTRS to map reflection from HF QPOs

(100 ksec exposure, select variations at QPO frequency)

Mapping AGN: best case NLS1s

XMS 100 ksec, bright NLS1

Fe line is not accessible, but soft disklines clearly visible (note line cores with large lags)

Summary

- Timing measurements are a powerful probe of strong gravity which is independent of and complementary to spectral approaches
- For fast timing and lags, we find highest S/N in BHXRBs with high count rates
- Good measurements can also be obtained at soft energies for the brightest and most variable AGN

Fourier-resolved spectra

Fourier-resolved lag-energy spectra

